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Abstract

Objective: The aim of this study was to determine gene 
expression and splicing changes associated with par-
turition and regions (visceral vs. subcutaneous) of the 
adipose tissue of pregnant women.
Study design: The transcriptome of visceral and abdomi-
nal subcutaneous adipose tissue from pregnant women at 
term with (n = 15) and without (n = 25) spontaneous labor 
was profiled with the Affymetrix GeneChip Human Exon 
1.0 ST array. Overall gene expression changes and the dif-
ferential exon usage rate were compared between patient 

groups (unpaired analyses) and adipose tissue regions 
(paired analyses). Selected genes were tested by quantita-
tive reverse transcription-polymerase chain reaction.
Results: Four hundred and eighty-two genes were differ-
entially expressed between visceral and subcutaneous 
fat of pregnant women with spontaneous labor at term 
(q-value  < 0.1; fold change  > 1.5). Biological processes 
enriched in this comparison included tissue and vascu-
lature development as well as inflammatory and meta-
bolic pathways. Differential splicing was found for 42 
genes [q-value  < 0.1; differences in Finding Isoforms using 
Robust Multichip Analysis scores  > 2] between adipose 
tissue regions of women not in labor. Differential exon 
usage associated with parturition was found for three 
genes (LIMS1, HSPA5, and GSTK1) in subcutaneous tissues.
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Conclusion: We show for the first time evidence of impli-
cation of mRNA splicing and processing machinery in the 
subcutaneous adipose tissue of women in labor compared 
to those without labor.

Keywords: Adipokines; delivery; fat depots; gestation; high 
dimensional biology; metabolism; obesity; pregnancy.

Introduction
Parturition imposes an increased energy demand on the 
laboring woman. Labor is characterized by increased con-
centrations of nutrients including glucose [1–5], free fatty 
acids [3, 6], ketone bodies [7], and lactic acid [8]. There is 
an approximate three-fold increase in whole body glucose 
utilization during labor and delivery and, as expected, 
energy expenditure of the parturient women in the second 
stage of labor is 40% higher compared to the first stage 
[9]. Additional support for the metabolic burden of labor 
can also be found in the examination of myometrial gly-
cogen storage, which is significantly increased at term 
[10], but almost completely depleted during labor [11]. 
Consistent with these findings, examination of the human 
myometrial transcriptome revealed that biological pro-
cesses related to metabolism were among the molecular 
functions enriched in the differentially expressed genes 
between pregnant women with and without spontaneous 
term labor [12].

The conventional view is that the energy expenditure 
of labor and delivery is equivalent to that of moderate exer-
cise [1, 9] and that similar mechanisms (e.g. insulin and 
non-insulin dependent glucose uptake, enhanced hepatic 
gluconeogenesis, and direct sympathetic nervous system 
stimulation) govern the metabolic adaptation to parturi-
tion [9, 13, 14]. However, whether or not adipose tissue, the 
major energy reservoir, is affected by labor and delivery is 
still unknown. Assessment of the putative role of adipose 
tissue in human parturition may be of special importance 
considering the large body of evidence indicating that 
this endocrinal organ is powerful [15] and exerts auto-
crine, paracrine and endocrine effects by the production 
and secretion of highly active peptides and proteins col-
lectively termed adipokines [16]. Importantly, adipokines 
have been implicated in physiological adaptations of 
normal gestation [17–28] as well as in the pathophysiology 
of preeclampsia [21, 29–50], gestational diabetes mellitus 
[51–65], preterm birth [66–68], delivery of large-for-gesta-
tional-age (LGA) newborns [69], small-for-gestational-age 
(SGA) neonates [70–76], pyelonephritis [77–79], and intra-
uterine infection and inflammation [80–83]. Of note is the 

well-established association between obesity and these 
complications of pregnancy [84–113].

It has been suggested that the implication of adipose 
tissue in physiological or pathological processes should 
take into account the region-specific differences between 
fat depots. Particularly, differences in function [114–116], 
gene expression [115, 117–144], and metabolic effect [145–
150] between the visceral and subcutaneous adipose 
tissue are to be considered. Indeed, regional variations 
of adipose tissue in specific genes were reported in non-
pregnant individuals using both high throughput tech-
niques [131–133, 136, 151] and targeted approaches [115, 
116, 131, 133, 152–166]. Overall gene expression in the 
adipose tissue of pregnant women has been previously 
reported [32, 117–123, 167–178]; however, adipose tissue 
gene expression, biological processes, molecular func-
tions, and pathways associated with spontaneous term 
parturition have not been described. Furthermore, to our 
knowledge, exon-level changes that can inform on alter-
native promoter usage, alternative splicing, and alterna-
tive transcript termination [179] between the visceral and 
subcutaneous regions have not been reported in either fat 
or other tissue of parturient women.

We undertook this study in order to characterize 
the transcriptome of human visceral and subcutane-
ous adipose tissue during normal labor at term to gain 
understanding of the global changes in gene expression 
and splicing associated with adiposity using an unbiased 
approach. The aims of this study were: 1) to determine dif-
ferences in visceral and subcutaneous gene expression 
between pregnant women with and without spontaneous 
labor at term; 2) to determine regional variations in the 
transcriptome of adipose tissue of patients with spontane-
ous labor at term; and 3) to identify depot-specific alter-
native splicing alterations in the adipose tissue of women 
with spontaneous labor at term.

Materials and methods
Study groups

A prospective study was performed in which visceral and subcutane-
ous adipose tissue samples were obtained from women undergoing 
cesarean section at term ( ≥ 37 weeks) in the following groups: 1) not 
in labor (n = 25) and 2) spontaneous labor (n = 15).

The inclusion criteria for both groups were as follows: 1) absence 
of medical complications; 2) no antibiotic administration prior to the 
sample collection; 3) normal post-operative course; 4) absence of 
 meconium staining of the amniotic fluid; 5) neonatal Apgar scores  > 7 
at 1 and 5 min; 6) absence of histologic chorioamnionitis; 7) absence 
of obstetric complications of pregnancy; and 8) normal pregnancy 
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outcome, including an infant who was of appropriate-weight-for-
gestational-age (AGA) without congenital anomalies.

Eligible patients were enrolled at Hutzel Women’s Hospital 
(Detroit, MI, USA). All women provided written informed consent 
prior to the collection of adipose tissue samples. The collection and 
utilization of the samples for research purposes was approved by the 
Institutional Review Boards of the Eunice Kennedy Shriver National 
Institute of Child Health and Human Development (NICHD/NIH/
DHHS, Bethesda, MD, USA), and the Human Investigation Committee 
of Wayne State University (Detroit, MI, USA). Samples obtained from 
pregnant women not in labor have been previously used to study the 
differences in transcriptome between pregnant and non-pregnant 
women.

Clinical definitions

Patients not in labor underwent a cesarean section secondary to a 
fetus in the non-cephalic presentation, previous uterine surgery, or 
classical cesarean section, or an elective cesarean section with no 
more than one previous cesarean section. Women in spontaneous 
labor underwent cesarean section due to a fetal malpresentation or 
for non-reassuring fetal status as determined by the clinical staff. 
Patients with clinical or histological chorioamnionitis and those 
undergoing induction of labor were excluded.

Labor was diagnosed in the presence of spontaneous regu-
lar uterine contractions occurring at a minimum frequency of two 
every 10  min with cervical changes that required hospital admis-
sion. Histologic chorioamnionitis was diagnosed using previously 
described criteria [180, 181]. An AGA neonate was defined by a birth 
weight between the 10th and 90th percentiles for the gestational age at 
birth [182]. Body mass index (BMI) was calculated according to the 
 formula: weight (kg)/height2 (m2).

Sample collection

Paired visceral and subcutaneous adipose tissue samples were 
obtained from each participant. Subcutaneous adipose tissue sam-
ples were collected at the site of a transverse lower abdominal inci-
sion, in the middle of the Pfannenstiel incision, from the deeper 
strata of subcutaneous fat. Visceral samples were obtained from the 
most distal portion of the greater omentum [116, 183–186]. Visceral 
and subcutaneous adipose tissues were collected using Metzenbaum 
scissors and measured approximately 1.0 cm3. Tissues were snap-
frozen in liquid nitrogen and stored at –80°C until use.

RNA isolation

Total RNA was isolated from snap-frozen adipose tissue using TRI 
Reagent® combined with the Qiagen RNeasy Lipid Tissue kit pro-
tocol (Qiagen, Valencia, CA, USA), according to the manufactur-
ers’ recommendations. The RNA concentrations and the A260 nm/
A280 nm ratio were assessed using a NanoDrop 1000 spectropho-
tometer (Thermo Scientific, Wilmington, DE, USA). RNA integrity 
numbers were determined using the Bioanalyzer 2100 (Agilent Tech-
nologies, Wilmington, DE, USA).

Microarray analysis and quantitative real-time 
 polymerase chain reaction

The Affymetrix GeneChip Human Exon 1.0 ST array (Affymetrix Inc., 
Santa Clara, CA, USA) platform was used to measure the expression 
levels in each unpooled specimen, per manufacturer’s instructions 
(http://www.affymetrix.com). The array contains approximately 
5.4 million 5-μm features (probes) grouped into 1.4 million probesets 
interrogating more than one million exon clusters [187–189]. To verify 
the results from microarray-based analysis, 24 genes were selected 
for quantitative real-time polymerase chain reaction (qRT-PCR) 
assays in the same set of samples used for microarrays.

Statistical analyses

Differential expression: The raw microarray probe intensity data 
were background corrected, quantile normalized [190] and summa-
rized into one expression value for each transcript using a robust 
multi-array average implemented in the aroma.affymetrix package 
[191]. A paired moderated t-test [192] was used to test for differential 
expression with a false discovery rate (FDR) [193] correction of P-val-
ues to obtain q-values. Gene significance was inferred using q < 0.1 
and fold-change in expression  > 1.5 [194]. Gene ontology analysis 
was performed with algorithms previously described [195]. Pathway 
analysis was performed on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [196] pathway database (96 pathways with three 
or more genes on our microarray platform) with an overrepresenta-
tion analysis [197]. Alternatively, the Pathway Analysis with Down-
weighting of Overlaping Genes (PADOG) [198] was applied on the 
canonical pathways collection from the MSigDB database [199] (831 
pathways with at least 20 genes represented on our microarray plat-
form). Differential expression between adipose tissue regions of the 
same subjects based on qRT-PCR data was performed with a paired 
t-test on –ΔCt values.

Differential exon usage (splicing): To identify differential exon 
usage between the groups of samples, we used the method Finding 
Isoforms using Robust Multichip Analysis (FIRMA) [200] to quantify 
how far (above or below) a given exon’s expression level was com-
pared to the expected (average) transcript level in a given sample. 
Criteria for inclusion of transcripts and exons are described in the 
supplementary material. We applied a t-test for each probeset (typi-
cally one per exon) in each transcript based on the FIRMA scores, 
and inferred significance when the difference in mean FIRMA scores 
between groups was 2.0 or more combined with a threshold of 0.1 
on the FDR-adjusted P-values (q-values). This was a more stringent 
approach than described in another study [200] in which positive 
results were identified based only on the difference in mean FIRMA 
scores above 1.5 units. Plotting of the probe-level expression data at 
exon levels vs. genomic coordinates was performed using functional-
ity provided by the GenomeGraphs package with known isoforms in 
the ENSEMBL database retrieved with biomaRt [200]. All microarray 
analyses were performed using the R language and environment and 
Bioconductor [200, 201].

Demographic data analysis: The Student’s t, Mann-Whitney U, 
and χ2 tests were used to identify significant differences in patient 
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demographics between women in the microarray and qRT-PCR 
groups. SPSS software (version 14.0; SPSS Inc, Chicago, IL, USA) was 
used for statistical analysis of demographic data. A probability value 
of  < 0.05 was considered statistically significant.

Results

Demographics

Table 1 displays the demographic characteristics of 
patients who were included in the microarray and qRT-PCR 
analyses.

Regional differences in the  transcriptome 
of adipose tissue of women with and 
without labor

Differential expression

Microarray analysis demonstrated 485 transcripts cor-
responding to 482 unique genes differentially expressed 
between the visceral and subcutaneous adipose tissue 
of pregnant women in spontaneous labor at term 
(q-value  < 0.1; fold change  > 1.5). A total of 329 genes had 
decreased expression, and 153 genes had increased expres-
sion in the subcutaneous, compared to visceral, adipose 
tissue. A “volcano plot” shows the differential expression 
of all annotated probesets on the Affymetrix GeneChip 
Human Exon 1.0 ST array with the log (base 10) of q-val-
ues (y-axis) plotted against the log (base 2) fold changes 
(x-axis) between the visceral and subcutaneous adipose 

Table 1: Demographic and clinical characteristics of the study population.

  Term labor (n = 15)  Term not in labor (n = 25)  P-value

Maternal age (years)   26 (24–38)  27 (25–39)  0.2
Gestational age at delivery (weeks)   39.7 (39–40.6)  39.1 (38.9–39.4)  0.2
Pre-gestational BMI (kg/m2)   35.3 (30.9–38.5)  37.5 (26.2–40.2)  0.5
BMI at sampling (kg/m2)   36.9 ( 32.5–39.7)  37.2 (27.8–45.4)  0.8
Gravidity   3 (2–3)  3 (2–4)  0.5
Parity   2 (1–3)  2 (2–3)  0.2
Ethnic origin (%)       1.0
 African American   91.7  83.3 
 Caucasian   8.3  16.7 
Systolic blood pressure (mm Hg)   124 (117–127)  121 (115–126)  0.4
Diastolic blood pressure (mm Hg)   75 (67–79)  66 (62–77)  0.3
Cervical dilatation at sampling   5 (4–7)  1 (1–2)   < 0.001
Fasting glucose (mg/dL)   93 (87–98)  94 (88–97)  0.7
Birth weight (g)   3320 (3155–3825)  3275 (3105–3500)  0.7

Data are presented as median and interquartile range (IQR). BMI = Body mass index.

Figure 1: Differential expression of visceral versus subcutaneous 
adipose tissue transcripts in pregnant women in labor.
Volcano plot showing differential expression evidence between 
subcutaneous and visceral adipose tissue of women in labor. The 
x-axis represents the log2 fold changes in expression with positive 
values representing over-expression in the subcutaneous region 
compared to visceral. Transcripts outside the vertical red bars have 
fold change  > 1.5. The y-axis represents the q-values (–log10 of), with 
values above 1.0 corresponding to q < 0.1.

tissue (Figure 1). The heatmap in Figure 2 uses a color scale 
to show the consistency of the expression levels within 
each group of samples as well as the differences between 
the groups that led to positive test results. A list of the top 
100 genes differentially expressed between visceral and 
subcutaneous adipose tissue of patients with and without 
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Figure 2: Heat map representing fat depot-specific differences in gene 
expression of pregnant women in labor.
Heatmap showing the consistency of gene expression levels 
between subcutaneous and visceral regions of the adipose tissue of 
women in labor. Log2  transformed transcript expression values are 
centered and scaled row-wise.

spontaneous labor at term is presented in Table 2; the com-
plete list of differentially expressed probes is available as 
supplementary material (Supplementary Table 1).

Among the 482 genes differentially expressed between 
visceral and subcutaneous adipose tissue in patients with 
spontaneous labor at term, 91 were not part of the 632 genes 
differentially expressed in the not in labor group (ENTREZ 
IDs suffixed by a * in Table 2 and Supplementary Table 1).

In order to gain further insight into the biology of the 
differential gene expression, Gene Ontology enrichment 
analysis was employed. A total of 94 biological processes 
were associated with regional differences in the spon-
taneous term labor group (q < 0.05) (Table 3). Pathway 
analysis performed using an over-representation on the 
KEGG database resulted in seven significant pathways in 
this comparison (q < 0.05): complement and coagulation 
cascades, cytokine-cytokine receptor interaction, focal 
adhesion, steroid hormone biosynthesis, ECM-receptor 
interaction, African trypanosomiasis, and protein diges-
tion and absorption.

qRT-PCR analysis

The results of qRT-PCR confirmed the differential expression 
of nine of 29 genes found to be significant on the microar-
ray analysis: lipoprotein lipase (LPL), retinol binding protein 

4 (RBP4), leptin (LEP), complement component 4B (Chido 
blood group) (C4B), insulin-like growth factor binding 
protein 2 (IGFBP2), monoglyceride lipase (MGLL), annexin 
A8 (ANXA8), klotho beta (KLB), and prolactin (PRL).

Differential splicing

Using the Affymetrix GeneChip Human Exon 1.0 ST array 
that probes individual exons of known genes, we com-
pared the exon usage (inclusion) rates between adipose 
tissue regions. Significant differences in exon usage were 
found for 42 genes between visceral and subcutaneous 
adipose tissue of pregnant women not in labor (Table 4) 
but not in the labor group.

Patients with spontaneous term labor versus 
pregnant women not in labor

Differential expression

We did not find significant differences in gene expression 
in either visceral or subcutaneous adipose tissue of preg-
nant women with and without spontaneous labor using 
our predefined gene selection criteria. However, when 
applying PADOG pathway analysis, four KEGG pathways 
(spliceosome, snare interactions in vesicular transport, 
pathogenic Escherichia coli infection, DNA replication) 
and three Reactome database [202] pathways (processing 
of capped intron containing pre-mRNA, mRNA processing, 
mRNA splicing) were found to be significantly perturbed 
in the presence of labor in the subcutaneous region of the 
adipose tissue (see enrichment plots for two of these path-
ways in Figure 3). Unlike the over-representation approach 
requiring gene selection as a first step, PADOG determines 
whether the differential expression t-scores of a given 
pathway are higher (in absolute value) than those of all 
genes profiled on the array and, hence, detects potentially 
smaller but systematic differential expression in a given 
pathway compared to all genes on the array (Figure  3). 
When comparing the visceral region of the women in labor 
to those without labor, the PADOG identified the Reactome 
asparagine N-linked glycosylation pathway to be associ-
ated with parturition (see Figure S1).

Differential splicing

Significant differences in exon usage were found between 
subcutaneous adipose tissue of pregnant women with 
and without spontaneous labor at term for three genes: 
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Table 2: A list of the top 100 differentially expressed genes between visceral and subcutaneous adipose tissue of patients with and without 
spontaneous labor at term.

ENTREZ   Symbol   Name   Fold change  q-Value

364   AQP7   Aquaporin 7   1.6  0.007
355   FAS   Fas (TNF receptor superfamily, member 6)   –1.9  0.007
100293763   AQP7P1   Aquaporin 7 pseudogene 1   1.8  0.007
9871*   SEC24D   SEC24 family, member D (Saccharomyces cerevisiae)   –1.7  0.007
83666*   PARP9   Poly(ADP-ribose) polymerase family, member 9   –1.6  0.008
729085*   CCBP2   Chemokine binding protein 2   –1.6  0.008
6285   S100B   S100 calcium binding protein B   1.6  0.008
10555   AGPAT2   1-Acylglycerol-3-phosphate O-acyltransferase 2 (lysophosphatidic acid 

acyltransferase, beta)
  1.6  0.008

6574   SLC20A1   Solute carrier family 20 (phosphate transporter), member 1   –1.9  0.008
54566   EPB41L4B   Erythrocyte membrane protein band 4.1 like 4B   1.6  0.008
58477*   SRPRB   Signal recognition particle receptor, B subunit   –1.8  0.008
54988*   ACSM5   Acyl-CoA synthetase medium-chain family member 5   1.6  0.008
9180   OSMR   Oncostatin M receptor   –1.9  0.008
284221   FAM38B2   Family with sequence similarity 38, member B2   –2.0  0.008
2819   GPD1   Glycerol-3-phosphate dehydrogenase 1 (soluble)   1.7  0.008
9052   GPRC5A   G protein-coupled receptor, family C, group 5, member A   –1.7  0.008
10973*   ASCC3   Activating signal cointegrator 1 complex subunit 3   –1.5  0.008
6517   SLC2A4   Solute carrier family 2 (facilitated glucose transporter), member 4   1.6  0.008
6713   SQLE   Squalene epoxidase   –1.6  0.008
83716   CRISPLD2   Cysteine-rich secretory protein LCCL domain containing 2   –1.9  0.008
10249   GLYAT   Glycine-N-acyltransferase   2.4  0.008
23555   TSPAN15   Tetraspanin 15   1.6  0.008
8908   GYG2   Glycogenin 2   1.5  0.008
5578   PRKCA   Protein kinase C, alpha   –1.5  0.008
54884   RETSAT   Retinol saturase (all-trans-retinol 13,14-reductase)   1.6  0.008
5055   SERPINB2   Serpin peptidase inhibitor, clade B (ovalbumin), member 2   –4.9  0.008
57568*   SIPA1L2   Signal-induced proliferation-associated 1 like 2   –1.5  0.008
5207   PFKFB1   6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 1   1.9  0.008
60559*   SPCS3   Signal peptidase complex subunit 3 homolog (S. cerevisiae)   –1.6  0.008
9197*   SLC33A1   Solute carrier family 33 (acetyl-CoA transporter), member 1   –1.5  0.008
3991   LIPE   Lipase, hormone-sensitive   1.6  0.008
26064*   RAI14   Retinoic acid induced 14   –1.6  0.008
8542*   APOL1   Apolipoprotein L, 1   –1.6  0.008
374969   CCDC23   Coiled-coil domain containing 23   1.5  0.008
8639   AOC3   Amine oxidase, copper containing 3 (vascular adhesion protein 1)   1.6  0.008
11098   PRSS23   Protease, serine, 23   –1.7  0.008
2822   GPLD1   Glycosylphosphatidylinositol specific phospholipase D1   1.7  0.008
8659   ALDH4A1   Aldehyde dehydrogenase 4 family, member A1   1.8  0.008
4718   THRSP   Thyroid hormone responsive (SPOT14 homolog, rat)   1.8  0.008
55024*   BANK1   B-cell scaffold protein with ankyrin repeats 1   1.6  0.008
6782*   HSPA13   Heat shock protein 70 kDa family, member 13   –1.8  0.008
65983   GRAMD3   GRAM domain containing 3   –1.8  0.008
4137   MAPT   Microtubule-associated protein tau   1.6  0.008
1009   CDH11   Cadherin 11, type 2, OB-cadherin (osteoblast)   –2.0  0.008
10130*   PDIA6   Protein disulfide isomerase family A, member 6   –1.5  0.008
51602*   NOP58   NOP58 ribonucleoprotein homolog (yeast)   –1.6  0.008
81539   SLC38A1   Solute carrier family 38, member 1   –2.4  0.008
51716   CES1   Carboxylesterase 1 (monocyte/macrophage serine esterase 1)   2.2  0.008
9643*   MORF4L2   Mortality factor 4 like 2   –1.5  0.008
666   BOK   BCL2-related ovarian killer   1.6  0.008
9945   GFPT2   Glutamine-fructose-6-phosphate transaminase 2   –2.4  0.008
55254*   TMEM39A   Transmembrane protein 39A   –1.5  0.008
22915   MMRN1   Multimerin 1   –3.8  0.008
84293   C10orf58   Chromosome 10 open reading frame 58   1.6  0.008
64757   MOSC1   MOCO sulphurase C-terminal domain containing 1   1.6  0.008
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ENTREZ   Symbol   Name   Fold change  q-Value

64805*   P2RY12   Purinergic receptor P2Y, G-protein coupled, 12   1.6  0.008
91607   SLFN13   Schlafen family member 13   –1.5  0.009
220   ALDH1A3   Aldehyde dehydrogenase 1 family, member A3   –2.3  0.009
212*   ALAS2   Aminolevulinate, delta-, synthase 2   1.7  0.009
10962   MLLT11   Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, 

Drosophila); translocated to, 11
  –2.2  0.009

358*   AQP1   Aquaporin 1 (Colton blood group)   –1.5  0.009
23612*   PHLDA3   Pleckstrin homology-like domain, family A, member 3   1.5  0.009
6578   SLCO2A1   Solute carrier organic anion transporter family, member 2A1   –1.7  0.009
286753*   TUSC5   Tumor suppressor candidate 5   1.5  0.009
5271*   SERPINB8   Serpin peptidase inhibitor, clade B (ovalbumin), member 8   –1.7  0.009
63924   CIDEC   Cell death-inducing DFFA-like effector c   1.8  0.009
4189*   DNAJB9   DnaJ (Hsp40) homolog, subfamily B, member 9   –1.7  0.009
56265   CPXM1   Carboxypeptidase X (M14 family), member 1   –1.7  0.009
58528*   RRAGD   Ras-related GTP binding D   1.5  0.009
262*   AMD1   Adenosylmethionine decarboxylase 1   –1.5  0.009
222166   C7orf41   Chromosome 7 open reading frame 41   1.6  0.009
338   APOB   Apolipoprotein B [including Ag(x) antigen]   2.4  0.009
158295   MGC24103   Hypothetical MGC24103   –1.5  0.009
1805*   DPT   Dermatopontin   1.5  0.009
10237*   SLC35B1   Solute carrier family 35, member B1   –1.5  0.009
623   BDKRB1   Bradykinin receptor B1   –3.0  0.009
5740   PTGIS   Prostaglandin I2 (prostacyclin) synthase   –2.0  0.009
6272   SORT1   Sortilin 1   1.7  0.009
1645   AKR1C2   Aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile 

acid binding protein; 3-a hydroxysteroid dehydrogenase, type III)
  2.1  0.009

5649   RELN   Reelin   –1.6  0.009
6446   SGK1   Serum/glucocorticoid regulated kinase 1   –1.9  0.009
51330   TNFRSF12A   Tumor necrosis factor receptor superfamily, member 12A   –1.8  0.009
388403*   YPEL2   Yippee-like 2 (Drosophila)   1.7  0.009
80704   SLC19A3   Solute carrier family 19, member 3   1.5  0.009
5140   PDE3B   Phosphodiesterase 3B, cGMP-inhibited   1.7  0.009
3036   HAS1   Hyaluronan synthase 1   –1.7  0.009
1646   AKR1C1   Aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 

20-a (3-a)-hydroxysteroid dehydrogenase)
  2.3  0.009

1962   EHHADH   Enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase   1.5  0.009
90355*   C5orf30   Chromosome 5 open reading frame 30   1.6  0.009
283383   GPR133   G protein-coupled receptor 133   –2.1  0.009
4199   ME1   Malic enzyme 1, NADP(+)-dependent, cytosolic   1.7  0.009
6366   CCL21   Chemokine (C-C motif) ligand 21   –3.5  0.009
4023   LPL   Lipoprotein lipase   1.6  0.009
6385   SDC4   Syndecan 4   –2.5  0.009
84649   DGAT2   Diacylglycerol O-acyltransferase homolog 2 (mouse)   1.6  0.009
80339*   PNPLA3   Patatin-like phospholipase domain containing 3   1.6  0.009
783   CACNB2   Calcium channel, voltage-dependent, beta 2 subunit   –1.7  0.009
7086   TKT   Transketolase   1.5  0.009
63895*   FAM38B   Family with sequence similarity 38, member B   –1.6  0.009
4883   NPR3   Natriuretic peptide receptor C/guanylate cyclase C (atrionatriuretic peptide 

receptor C)
  1.8  0.009

Table 2 (continued)

Glutathione S-transferase kappa 1 (GSTK1), heat shock 
70  kDa protein 5 (glucose-regulated protein, 78 kDa) 
(HSPA5), and LIM and senescent cell antigen-like-con-
taining domain protein 1 (LIMS1). None of the three genes 

were differentially expressed between visceral and subcu-
taneous adipose tissue of parturient women as the change 
in mRNA abundance was present only for one exon of 
each gene (Figures 4 and 5 illustrate the differential exon 
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Table 3: Bological processes associated with regional differences in the spontaneous term labor group.

Biological process   Term size  DE genes  Odds ratio  q-Value

Response to external stimulus   951  74  2.7   < 0.001
Retinal metabolic process   9  8  216.8   < 0.001
Circulatory system development   739  61  2.6   < 0.001
Regulation of complement activation   18  9  27.1   < 0.001
Blood vessel morphogenesis   347  35  3.2   < 0.001
Multicellular organismal process   4870  232  1.7   < 0.001
Positive regulation of cellular component movement   283  30  3.3   < 0.001
Anatomical structure formation involved in morphogenesis   846  61  2.2   < 0.001
Regulation of cell motility   498  42  2.6   < 0.001
Terpenoid metabolic process   63  13  7.2   < 0.001
Retinol metabolic process   17  7  18.9   < 0.001
Phototransduction, visible light   70  13  6.2   < 0.001
Vasculature development   393  34  2.7  0.001
Triglyceride catabolic process   25  8  12.7  0.001
Positive regulation of signal transduction   905  60  2.1  0.001
Glomerular filtration   19  7  15.8  0.001
Neutral lipid catabolic process   29  8  10.3  0.002
Regulation of inflammatory response   123  16  4.2  0.002
Cell motility   461  35  2.5  0.002
Positive regulation of cell-substrate adhesion   60  11  6.1  0.002
Detection of light stimulus   86  13  4.9  0.003
Acute inflammatory response   75  12  5.2  0.003
Reproductive system development   321  28  2.6  0.004
Striated muscle cell differentiation   164  18  3.4  0.005
Regulation of hormone levels   122  15  3.9  0.005
Tissue morphogenesis   498  37  2.2  0.005
Death   1510  84  1.7  0.006
Glycerolipid catabolic process   36  8  7.7  0.007
Cellular response to jasmonic acid stimulus   3  3  Inf  0.008
Positive regulation of phosphate metabolic process   776  50  1.9  0.008
Receptor-mediated endocytosis   173  18  3.2  0.008
Cellular developmental process   2884  140  1.5  0.008
Protein activation cascade   49  9  6.1  0.009
Tube development   407  31  2.3  0.010
Urogenital system development   211  20  2.9  0.011
Positive regulation vascular endothelial growth factor production   21  6  10.8  0.011
Cell junction assembly   177  18  3.1  0.011
Positive regulation of angiogenesis   102  13  4.0  0.011
Response to lipid   607  41  2.0  0.012
Positive regulation of macrophage derived foam cell differentiation   14  5  14.9  0.012
Cell chemotaxis   181  18  3.0  0.013
Single-organism process   634  29  2.7  0.013
Response to oxygen-containing compound   948  56  1.8  0.013
Terpenoid biosynthetic process   8  4  26.8  0.013
Embryonic limb morphogenesis   106  13  3.8  0.014
Regulation of response to stress   847  52  1.8  0.014
Negative regulation of protein processing   234  21  2.7  0.014
Positive regulation of epithelial cell proliferation   123  14  3.5  0.016
Regulation of behavior   155  16  3.1  0.017
Regulation of multicellular organismal development   1167  66  1.7  0.017
Response to wounding   168  16  3.1  0.017
Regulation of phosphorylation   1016  59  1.7  0.019
Complement activation, alternative pathway   9  4  21.5  0.019
Negative regulation of cardiac muscle tissue development   16  5  12.2  0.019
Epithelium development   624  40  2.0  0.020
Muscle cell migration   46  8  5.7  0.021
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Biological process   Term size  DE genes  Odds ratio  q-Value

Oxoacid metabolic process   849  51  1.8  0.022
Regulation of transport   1300  71  1.6  0.023
Regulation of leukocyte chemotaxis   72  10  4.4  0.023
Positive regulation of focal adhesion assembly   17  5  11.2  0.023
Regulation of protein metabolic process   152  15  3.1  0.024
Small molecule metabolic process   1919  97  1.5  0.024
Endothelial cell morphogenesis   10  4  17.9  0.025
Negative regulation of heart growth   10  4  17.9  0.025
Response to acid chemical   233  20  2.6  0.026
Negative regulation of endopeptidase activity   150  15  3.0  0.028
Establishment of localization   3464  158  1.4  0.028
Cellular response to tumor necrosis factor   90  11  3.8  0.031
Endodermal cell differentiation   39  7  5.9  0.034
Retinoic acid biosynthetic process   5  3  40.3  0.034
Protein secretion   352  26  2.2  0.035
Cellular lipid metabolic process   480  32  2.0  0.035
Cellular response to endogenous stimulus   836  49  1.7  0.035
Regulation of cell adhesion   418  29  2.1  0.035
Positive regulation of locomotion   193  17  2.7  0.035
Appendage morphogenesis   123  13  3.2  0.035
Negative regulation of muscle tissue development   29  6  7.0  0.035
Positive regulation of cell proliferation   487  32  2.0  0.036
Regulation of striated muscle tissue development   79  10  3.9  0.036
Lung development   110  12  3.4  0.038
Triglyceride biosynthetic process   53  8  4.8  0.039
Positive regulation of mesenchymal cell proliferation   30  6  6.7  0.040
Negative regulation of muscle organ development   30  6  6.7  0.040
Positive regulation of leukocyte migration   81  10  3.8  0.042
Neutral lipid biosynthetic process   54  8  4.7  0.042
Peptide transport   248  20  2.4  0.043
Peptide hormone secretion   195  17  2.6  0.045
Inflammatory response   227  18  2.5  0.047
Cell adhesion   493  31  2.0  0.047
Response to toxic substance   129  13  3.0  0.047
Positive regulation of MAPK cascade   236  19  2.4  0.047
Regulation of cell-matrix adhesion   69  9  4.1  0.047
Daunorubicin metabolic process   6  3  26.8  0.049
Doxorubicin metabolic process   6  3  26.8  0.049

Table 3 (continued)

usage for LIMS1 and GSTK1). For all three genes, the exon 
showing differential usage had lower expression in the 
group of women in labor compared to the not-in-labor 
group. These three genes were not among the 42 genes 
with differential exon usage between visceral and subcu-
taneous adipose tissue of pregnant women not in labor 
(Table 4).

Discussion
The principal findings of this study include the  following: 
1)  Visceral and subcutaneous adipose tissue transcrip-
tome of pregnant women with spontaneous labor at 

term were different: i) 482 genes were differentially 
expressed between the two fat depots; ii) Gene Ontol-
ogy analysis indicated specific biological processes (e.g. 
cell adhesion, vasculature development, and circulatory 
system development); iii) the KEGG pathways enriched 
in differentially expressed genes were: complement and 
coagulation cascades, cytokine-cytokine receptor inter-
action, focal adhesion, steroid hormone biosynthesis, 
ECM-receptor interaction, African trypanosomiasis, and 
protein digestion and absorption. 2) Significant differ-
ences in alternative spliced genes were found between 
the subcutaneous adipose tissue of pregnant women 
with and without spontaneous labor at term; three genes 
affected by alternative splicing were LIM and senescent 
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Table 4: A list of the alternative splicing events associated with the regional differences of the adipose tissue of pregnant women not in labor.

ENTREZ   SYMBOL   Name   Exon IDa  Diff. FIRMAb  P-value  q-Value

5376   PMP22   Peripheral myelin protein 22   887424  5.2   < 0.001   < 0.001
6711   SPTBN   Spectrin, beta, non-erythrocytic 1   103031  –5.1   < 0.001   < 0.001
25818   KLK5   Kallikrein-related peptidase 5   960481  –4.6   < 0.001   < 0.001
85442   KNDC1   Kinase non-catalytic C-lobe domain (KIND) containing 1   596822  –3.5   < 0.001   < 0.001
388610   TRNP1   TMF1-regulated nuclear protein 1   7232  –3.1   < 0.001   < 0.001
1612   DAPK1   Death-associated protein kinase 1   538110  3.1   < 0.001   < 0.001
9201   DCLK1   Doublecortin-like kinase 1   742860  –3.0   < 0.001   < 0.001
9214   FAIM3   Fas apoptotic inhibitory molecule 3   84252  –2.9   < 0.001   < 0.001
25891   PAMR1   Peptidase domain containing associated with muscle regeneration 1   656516  2.9   < 0.001   < 0.001
3983   ABLIM1   Actin binding LIM protein 1   619043  2.9   < 0.001   < 0.001
286204   CRB2   Crumbs homolog 2 (Drosophila)   544486  –2.8   < 0.001   < 0.001
11343   MGLL   Monoglyceride lipase   236116  –2.7   < 0.001  0.0017
25891   PAMR1   Peptidase domain containing associated with muscle regeneration 1   656516  2.7   < 0.001   < 0.001
1674   DES   Desmin   131889  –2.7   < 0.001  0.0068
10231   RCAN2   Regulator of calcineurin 2   399076  2.6   < 0.001   < 0.001
23524   SRRM2   Serine/arginine repetitive matrix 2   826444  –2.6   < 0.001   < 0.001
23524   SRRM2   Serine/arginine repetitive matrix 2   826444  –2.5   < 0.001   < 0.001
157506   RDH10   Retinol dehydrogenase 10 (all-trans)   491273  2.5   < 0.001  0.0017
85442   KNDC1   Kinase non-catalytic C-lobe domain (KIND) containing 1   596819  –2.5   < 0.001   < 0.001
79804   HAND2   Heart and neural crest derivatives expressed 2   298919  –2.4   < 0.001   < 0.001
65108   MARCKSL1     55081  –2.4   < 0.001   < 0.001
4071   TM4SF1   Transmembrane 4 L six family member 1   240134  –2.4   < 0.001  0.006
4837   NNMT   Nicotinamide N-methyltransferase   644508  –2.3   < 0.001  0.0099
51090   PLLP   Plasma membrane proteolipid (plasmolipin)   855189  2.3   < 0.001   < 0.001
1674   DES   Desmin   131895  –2.3   < 0.001  0.0028
152   ADRA2C   Adrenergic, a-2C-, receptor   249900  –2.3   < 0.001  0.0037
81539   SLC38A1   Solute carrier family 38, member 1   707206  2.3   < 0.001   < 0.001
57121   LPAR5   Lysophosphatidic acid receptor 5   701054  –2.3   < 0.001  0.001
56920   SEMA3G   Sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3G
  224606  –2.3   < 0.001   < 0.001

9945   GFPT2   Glutamine-fructose-6-phosphate transaminase 2   359171  2.2   < 0.001   < 0.001
2627   GATA6   GATA binding protein 6   908232  –2.2   < 0.001   < 0.001
4824   NKX3-1   NK3 homeobox 1   506935  –2.1   < 0.001   < 0.001
3036   HAS1   Hyaluronan synthase 1   960742  –2.1   < 0.001   < 0.001
5420   PODXL   Podocalyxin-like   472183  –2.1   < 0.001   < 0.001
5420   PODXL   Podocalyxin-like   472213  2.1   < 0.001   < 0.001
3339   HSPG2   Heparan sulfate proteoglycan 2   52523  –2.1   < 0.001  0.0746
23555   TSPAN15   Tetraspanin 15   582734  –2.1   < 0.001   < 0.001
23428   SLC7A8   Solute carrier family 7 (cationic amino acid transporter, y+ system), 

member 8
  772193  –2.1   < 0.001   < 0.001

3913   LAMB2   Laminin, beta 2 (laminin S)   223487  –2.0   < 0.001   < 0.001
23428   SLC7A8   Solute carrier family 7 (cationic amino acid transporter, y+ system), 

member 8
  772200  –2.0   < 0.001   < 0.001

89932   PAPLN   Papilin, proteoglycan-like sulfated glycoprotein   763903  –2.0   < 0.001   < 0.001
255743   NPNT   Nephronectin   263882  2.0   < 0.001   < 0.001

aExon Identifier based on annotation provided HuEx-1_0-st-v2.na30.hg19.probeset.csv file from www.affymetrix.com. bFIRMA scores are a 
measure of the exon abundance relative to the overall gene level in a given sample. Positive differences in FIRMA scores represent a higher 
exon usage rate in subcutaneous compared to visceral adipose tissue of women not in labor.

cell antigen-like-containing domain protein 1 (LIMS1), 
heat shock 70  kDa protein 5 (glucose-regulated protein, 
78 kDa) (HSPA5), and  Glutathione S-transferase kappa 1 
(GSTK1); and 3) visceral and subcutaneous adipose tissue 
transcriptome of pregnant women with and without spon-
taneous labor at term did not differ significantly.

Visceral versus subcutaneous adipose tissue 
in pregnant women with spontaneous labor 
at term
This study describes, for the first time, the transcriptome 
of visceral and subcutaneous adipose tissue of pregnant 
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women with spontaneous labor at term. High throughput 
technology has been employed in obstetrics [203–208]. 
Specifically, the transcriptome of the uterine cervix [209–
217], myometrium [12, 218–224], chorioamniotic mem-
branes [225, 226], amniotic fluid [227–236], maternal blood 
[237], and umbilical cord blood [238] have been reported. 
Region-specific differences were extensively investigated 
in non-pregnant individuals using both targeted and high-
dimensional biology techniques [124–142, 145, 148–151, 153, 
239–242]. In contrast, previous reports concerning gene 
expression in adipose tissue of pregnant women have used 
only the targeted approach [32, 117–123, 167–176] with two 
exceptions [178]. Resi et al. investigated the transcriptome 
of subcutaneous adipose tissue obtained from the gluteal 
depot. Participants in that study included healthy non-
obese women and healthy women not in labor [178]. This is 
the first report to use either a high-dimensional biological 
technique or a targeted approach in the investigation of fat 
depots during normal human labor.

Bashiri et  al. [243] have determined alterations in 
genome-wide transcription expression in visceral and 
abdominal subcutaneous fat depots in obese and lean 

Figure 3: Pathway perturbation associated with parturition in 
subcutaneous tissue.
PADOG pathway enrichment plots showing evidence of pathway per-
turbation associated with parturition in subcutaneous tissue. The 
distribution of moderated t-scores of genes in KEGG spliceosome 
and reactome mRNA splicing is superimposed on the distribution 
of all genes on the array, and shows more differential expression in 
these pathways than in the pool of all genes.

Figure 5: Differential exon usage for the GSTK1 gene in subcutane-
ous adipose tissue of women with and without labor.
See Figure 3 legend for layout details. Affymetrix probeset ID 3028993 
(see red rectangles), shows systematically lower expression in women 
in labor, while the expression level for all other exons is very similar 
between groups, hence resulting in significantly lower FIRMA scores 
for this probeset between groups. The only ENSEMBL transcript that 
includes the exonic region with differential usage between groups is 
ENST00000479303, and an imbalance of this isoform with respect 
to the other isoforms can explain the observed differences.

Figure 4: Differential exon usage for LIMS1 gene in subcutaneous 
adipose tissue of women with and without labor.
The top panel shows the log2 expression of probes targeting 
12 exonic regions of the LIMS1 gene (separated by vertical gray 
lines). There are 1–4 probes per probeset. Each line corresponds 
to a sample, with colors blue and gray denoting one patient with 
and without labor, respectively. The second exon from the 5′ end 
targeted by Affymetrix probeset ID 2499062 (see red rectangles), 
shows systematically lower expression in women in labor, while the 
expression level for all other exons is very similar between groups, 
hence resulting in significantly lower FIRMA scores for this probeset 
between groups. The middle panel shows the genomic region and 
the gene model with each exon represented by one olive-colored 
rectangle. ENSEMBL transcripts that do or do not include the exon 
with differential usage are represented in blue with their corre-
sponding identifiers.

Unauthenticated
Download Date | 1/24/17 1:22 PM



824      Mazaki-Tovi et al., Visceral and subcutaneous adipose tissue transcriptome in labor

pregnant women (four in each group) using the  Affymetrix 
Human Exon 1.0 ST platform. The authors reported that 
global alteration in gene expression was identified in 
pregnancy complicated by obesity and the identifica-
tion of indolethylamine N-methyltransferase, tissue 
factor pathway inhibitor-2, and ephrin type-B receptor 6 
that were not previously associated with fat metabolism 
during pregnancy. In addition, subcutaneous fat of obese 
pregnant women demonstrated increased coding protein 
transcripts associated with apoptosis as compared to lean 
pregnant women. Of note, all participants in Bashiri et al. 
[243] were not in labor.

Comparison between the transcriptome of 
visceral and subcutaneous adipose tissue in 
pregnant women with and without spontane-
ous labor at term: evidence for an active role 
of adipose tissue response in the metabolic 
adaptation to parturition

An additional novel finding reported herein is the implica-
tion of alternative splicing in subcutaneous adipose tissue of 
pregnant women in spontaneous labor at term. Alternative 
splicing is a major biological process by which a relatively 
limited number of genes can be expended into elaborate 
proteomes [244]. It has been estimated that approximately 
two-thirds to three-quarters of all human genes undergo 
alternative splicing [201, 244–246]. This process allows cells 
to include or exclude different selective sections of pre-
mRNA during RNA processing [247]. The altered transcripts 
result in closely related proteins expressed from a single 
locus [247]. The splicing process may affect function, locali-
zation, binding properties, and stability of the encoded pro-
teins [244, 248] as well as degradation of the transcript [244, 
249, 250]. It is an important regulatory mechanism that has 
been shown to be involved in several molecular pathways 
including angiogenesis and differentiation [247, 251]. To our 
knowledge, this is the first report implicating alternative 
splicing in parturition-related differences of subcutaneous 
adipose tissue or any other tissue.

While we did not find significant differences in gene 
expression between either visceral or subcutaneous 
adipose tissue of pregnant women with and without spon-
taneous labor at term, we identified three genes affected 
by alternative splicing: Glutathione S-transferase kappa 1 
(GSTK1), heat shock 70 kDa protein 5 (glucose-regulated 
protein, 78 kDa) (HSPA5), and LIM and senescent cell 
antigen-like-containing domain protein 1 (LIMS1). The 
Kappa class of glutathione S-transferases (GSTK) was first 

identified in the mitochondrial matrix from rat liver [252]. 
The human glutathione S-transferase kappa 1 (GSTK1) 
gene and protein were first characterized less than a 
decade ago [253]. Further studies of human GSTK1-1 have 
confirmed its presence in mitochondria and peroxisomes 
[253–255]. GSTK1-1 is highly expressed in adipose tissue, 
and its expression level was negatively correlated with 
obesity in humans and mice [256]. Importantly, GSTK1-1 
plays a critical and selective role in regulating adiponec-
tin biosynthesis. Specifically, suppression of GSTK1-1 
inhibits adiponectin multimerization, probably by func-
tioning as protein disulfide isomerase that regulates adi-
ponectin disulfide bond formation, which is essential for 
multimerization.

Adiponectin, identified independently by four groups 
[257–260], is the most abundant gene (AMP1) product of 
adipose tissue; it circulates at a relatively high concen-
tration [261]. Adiponectin has an important role in the 
pathophysiology of insulin resistance and diabetes [262], 
atherosclerosis [263], hypertension [264], dyslipidemia 
[265], and angiogenesis [266]. A solid body of evidence 
supports the role of adiponectin in normal gestation and 
pregnancy complications: 1) circulating maternal adi-
ponectin correlates with insulin resistance indices during 
pregnancy [267]; 2) patients with gestational diabetes 
mellitus (GDM) have a lower concentration of adiponec-
tin compared to those without GDM [51, 53, 268, 269]; 
4) overweight pregnant patients have a lower adiponectin 
concentration than pregnant women of normal weight; 
and 5) preeclampsia is associated with altered maternal 
adiponectin concentrations [21, 29, 32–34, 36, 38, 45, 46]. 
Collectively, these findings suggest that adiponectin may 
play a regulatory role in metabolic and vascular compli-
cations of pregnancy. Adiponectin circulates in human 
plasma in distinct forms: 1) low-molecular-weight (LMW) 
trimers; 2)  medium-molecular-weight (MMW) hexamers; 
and 3)  high-molecular-weight (HMW) oligomers (12–18 
sub units) [270]. These adiponectin multimers can exert 
distinct biological effects [270], activate different single 
transduction pathways [271, 272], and may have different 
affinities to the adiponectin receptors [273]. Consistent 
with these findings, the ratio of HMW to total adiponectin 
[270] has a better correlation with insulin resistance [270], 
obesity [274], cardiovascular diseases [275], and other 
impaired metabolic states [276, 277] than total adiponectin. 
Alterations in the relative distribution of  adiponectin have 
been reported in normal gestation [17, 22, 26, 278, 279] as 
well as in preeclampsia [31, 280], gestational diabetes [52, 
281], and delivery of SGA neonates [17, 71, 72, 278–281]. We 
have previously determined concentrations of circulating 
maternal adiponectin multimers in women with normal 
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pregnancy and in those with preterm labor, with and 
without intra-amniotic inflammation/infection [66]. We 
have found that labor, per se, regardless of the presence 
of infection/inflammation, is associated with significant 
quantitative and qualitative alterations in adiponectin 
multimers. Taken together, the results of our previous and 
present studies suggest that the differences in the expres-
sion of GSTK1 in the subcutaneous adipose tissue between 
pregnant women with and without labor may provide a 
molecular mechanism for the altered regulation of adi-
ponectin and adiponectin multimers associated with 
labor. This, in turn, may be important for the regulation of 
energy expenditure associated with parturition.

Heat shock 70  kDa protein 5 (HSPA5), also known 
as 78 kD glucose-regulated protein (GRP78) or immuno-
globulin heavy chain-binding protein (BiP) [282, 283], 
is an ER-resident multifunctional molecular chaperone 
[284] belonging to the Hsp70 family of heat shock proteins 
[285]. HSPA5 is a key component of the unfolded protein 
response (UPR) signaling pathway that plays an impor-
tant role in ER homeostasis [286]. HSPA5 increases the 
ER protein folding capacity by forming multiprotein com-
plexes with other ER chaperones and regulates the activity 
of the ER-transmembrane sensor proteins PERK, IRE1, and 
ATF6 by sequestering them in inactive complexes [287, 
288]. Recently, several studies proposed that increased 
endoplasmic reticulum stress may represent the proximal 
cause of the association between obesity and adipocyte 
insulin resistance [289–291]. Moreover, studies examin-
ing human adipose tissue have indicated that there is an 
increase in the ER stress transcript HSPA5 as a function 
of increased BMI [292, 293]. Thus, it can be hypothesized 
that parturition imposes increased metabolic demands 
and results in ER stress which, in turn, is attenuated by 
overproduction of HSPA5 in subcutaneous adipose tissue. 
Further studies are needed to test this hypothesis.

The additional gene affected by alternative splicing 
in subcutaneous adipose tissue of pregnant women with 
spontaneous labor at term is LIM and senescent cell anti-
gen-like-containing domain protein 1 (LIMS1). LIM domain 
proteins contain at least one double zinc-finger motif, and 
they express mainly in mammalian hearts, particularly 
in cardiomyocytes [294]. These proteins contain between 
one and five LIM domains and have been implicated in the 
development of the heart and heart disorders. There are 
two members in the five-domain LIM family: LIMS1 and 
LIMS2. They act as adaptor proteins forming ternary com-
plexes and participate in cell-cell, cell-matrix adhesion, 
migration, growth, and cell survival [295, 296]. LIMS1 
and LIMS2 also function as stress sensors that enable 
the heart to detect mechanical stretch and respond by 

increasing contractile force. Other members in this large 
family have been implicated in the development of the 
heart  [297–302], kidney [303–305], and liver [306] as well 
as in cancer  [307–313] and in neurodegenerative disease 
[312, 314]. Interestingly, a member of the LIM family, four 
and a half LIM domains (FHL1), was found to be differ-
entially expressed between visceral and omental adipose 
tissue in humans. To our knowledge, this report repre-
sents the first evidence that LIMS1 is expressed in human 
adipose tissue. Based on previous reports concerning the 
physiological role of this gene in other organs, it is tempt-
ing to postulate that LIMS1 is involved in the remodeling 
of the subcutaneous adipose tissue.

Strengths and limitations of the study

The major strengths of this study include the novel findings 
reported herein: 1) the implementation of a high through-
put technique in the investigation of different adipose 
tissue depots, 2) the evaluation of paired  specimens, 3) the 
inclusion of well-matched controls, and 4) the relatively 
large sample size. Our results include the first descrip-
tion of the transcriptome of adipose tissue – visceral and 
subcutaneous – in parturient women. Significant differ-
ences in alternative spliced genes were found in the sub-
cutaneous adipose tissue between pregnant women with 
and without labor, implicating that alternative splicing in 
labor may be associated with differences in subcutaneous 
adipose tissue for the first time. We have identified the 
LIMS1 gene, previously unrecognized, to be expressed in 
subcutaneous adipose tissue. Several limitations of our 
study should also be acknowledged. The cross-sectional 
nature of this study does not allow us to determine either 
a temporal or a causal relationship between labor and 
alterations in adipose tissue region-specific gene expres-
sion. In addition, as most of the participants in the study 
were  African American, the generalization of our findings 
to pregnant women of different ethnic origins will require 
future investigation.

Conclusion
We provide evidence for the association between labor 
and changes in gene expression in adipose tissue. Specifi-
cally, alternative splicing has been implicated in human 
parturition for the first time, providing a putative molec-
ular mechanism by which regulation of adipose tissue 
metabolic adaptations to the increased energy demand 
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associated with labor occurs. In addition, we provide 
evidence that human parturition is characterized by a 
unique pattern of adipose tissue region-specific altera-
tions in gene expression. Collectively, our data indicate 
that adipose tissue may play a role in the metabolic regu-
lation of human parturition.
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